ChallengeDetecting livelihood in a distributed cluster
I’m teaching a course at university about cloud computing. That can be a lot of fun, but quite frustrating at time. The key issue for me is that I occasionally need to provide students with some way to do something that I know how to do properly, but I can’t.
Case in point, assuming that I have a distributed cluster of nodes, and we need to detect what nodes are up or down, how do you do that?
With RavenDB, we assign an observer to the cluster whose job is to do health monitoring. I can explain that to the students, but I can’t expect them to utilize this technique in their exercises, there is too much detail there. The focus of the lesson or exercise is not to build a distributed system but to make use of one, after all.
As a rule, I try to ensure that all projects that we are working on can be done in under 200 lines of Python code. That puts a hard limit to the amount of behavior I can express. Because of that, I find myself looking for ways to rely on existing infrastructure to deal with the situation.
Each node is running the same code, and they are setup so they can talk to one another, if needed. It is important that all the live nodes will converge to agree on the active nodes in relatively short order.
The task is to find the list of active nodes in a cluster, where nodes may go up or down dynamically. We are running in AWS cloud so you can use its resources, how would you do that?
The situation should be as simple as possible and easy to explain to students.
More posts in "Challenge" series:
- (03 Feb 2025) Giving file system developer ulcer
- (20 Jan 2025) What does this code do?
- (01 Jul 2024) Efficient snapshotable state
- (13 Oct 2023) Fastest node selection metastable error state–answer
- (12 Oct 2023) Fastest node selection metastable error state
- (19 Sep 2023) Spot the bug
- (04 Jan 2023) what does this code print?
- (14 Dec 2022) What does this code print?
- (01 Jul 2022) Find the stack smash bug… – answer
- (30 Jun 2022) Find the stack smash bug…
- (03 Jun 2022) Spot the data corruption
- (06 May 2022) Spot the optimization–solution
- (05 May 2022) Spot the optimization
- (06 Apr 2022) Why is this code broken?
- (16 Dec 2021) Find the slow down–answer
- (15 Dec 2021) Find the slow down
- (03 Nov 2021) The code review bug that gives me nightmares–The fix
- (02 Nov 2021) The code review bug that gives me nightmares–the issue
- (01 Nov 2021) The code review bug that gives me nightmares
- (16 Jun 2021) Detecting livelihood in a distributed cluster
- (21 Apr 2020) Generate matching shard id–answer
- (20 Apr 2020) Generate matching shard id
- (02 Jan 2020) Spot the bug in the stream
- (28 Sep 2018) The loop that leaks–Answer
- (27 Sep 2018) The loop that leaks
- (03 Apr 2018) The invisible concurrency bug–Answer
- (02 Apr 2018) The invisible concurrency bug
- (31 Jan 2018) Find the bug in the fix–answer
- (30 Jan 2018) Find the bug in the fix
- (19 Jan 2017) What does this code do?
- (26 Jul 2016) The race condition in the TCP stack, answer
- (25 Jul 2016) The race condition in the TCP stack
- (28 Apr 2015) What is the meaning of this change?
- (26 Sep 2013) Spot the bug
- (27 May 2013) The problem of locking down tasks…
- (17 Oct 2011) Minimum number of round trips
- (23 Aug 2011) Recent Comments with Future Posts
- (02 Aug 2011) Modifying execution approaches
- (29 Apr 2011) Stop the leaks
- (23 Dec 2010) This code should never hit production
- (17 Dec 2010) Your own ThreadLocal
- (03 Dec 2010) Querying relative information with RavenDB
- (29 Jun 2010) Find the bug
- (23 Jun 2010) Dynamically dynamic
- (28 Apr 2010) What killed the application?
- (19 Mar 2010) What does this code do?
- (04 Mar 2010) Robust enumeration over external code
- (16 Feb 2010) Premature optimization, and all of that…
- (12 Feb 2010) Efficient querying
- (10 Feb 2010) Find the resource leak
- (21 Oct 2009) Can you spot the bug?
- (18 Oct 2009) Why is this wrong?
- (17 Oct 2009) Write the check in comment
- (15 Sep 2009) NH Prof Exporting Reports
- (02 Sep 2009) The lazy loaded inheritance many to one association OR/M conundrum
- (01 Sep 2009) Why isn’t select broken?
- (06 Aug 2009) Find the bug fixes
- (26 May 2009) Find the bug
- (14 May 2009) multi threaded test failure
- (11 May 2009) The regex that doesn’t match
- (24 Mar 2009) probability based selection
- (13 Mar 2009) C# Rewriting
- (18 Feb 2009) write a self extracting program
- (04 Sep 2008) Don't stop with the first DSL abstraction
- (02 Aug 2008) What is the problem?
- (28 Jul 2008) What does this code do?
- (26 Jul 2008) Find the bug fix
- (05 Jul 2008) Find the deadlock
- (03 Jul 2008) Find the bug
- (02 Jul 2008) What is wrong with this code
- (05 Jun 2008) why did the tests fail?
- (27 May 2008) Striving for better syntax
- (13 Apr 2008) calling generics without the generic type
- (12 Apr 2008) The directory tree
- (24 Mar 2008) Find the version
- (21 Jan 2008) Strongly typing weakly typed code
- (28 Jun 2007) Windsor Null Object Dependency Facility
Comments
so all nodes are the same and run the same code, and we don't have a leader node? In this case and at my level of knowledge (or rather ignorance) about distributed systems i would put the nodes in same subnet and use IP broadcast - nodes would announce their availability by periodically sending 'i'm alive' packet and all would receive it and update their list of active peers based on that.
Rafal,
I'm pretty sure that this is going to be a PITA in most cloud environments.
https://blogs.oracle.com/ravello/cloud-networking-ip-broadcasting-multicasting-amazon-ec2
ok. i think more assumptions need to be made, for example how do the nodes know that they are a part of the same cluster?
Rafal,
Sure, that is your call. You can have some configuration shared among all.
Comment preview