The RavenDB indexing processOptimization–De-parallelizing work

time to read 2 min | 336 words

One of the major dangers in doing perf work is that you have a scenario, and you optimize the hell out of that scenario. It is actually pretty easy to do without even noticing it. The problem is that when you do things like that, you are likely to be optimizing a single scenario to perform really well, but you are hurting the overall system performance.

In this example, we have moved heaven and earth to make sure that we are indexing things as fast as possible, and we tested with 3 indexes, on an 4 cores machine. As it turned out, we actually had improved things, for that particular scenario.

Using the same test case on a single core machine was suddenly far more heavy weight, because we were pushing a lot of work at the same time. More than the machine could process. The end result was that it actually got there, but much more slowly than if we would have run things sequentially.

Of course, I give you the outliers, but those are good indicators for what we found out. Initially, we thought that we could resolve that by using the TPL’s MaxDegreeOfParallelism, but it turned out to be more complex than that. We have IO bound and we have CPU bound tasks that we need to execute, and trying to execute IO heavy tasks with this would actually cause issues in this scenario.

We had to manually throttle things ourselves, both to ensure limited number of parallel work, and because we have a lot more information about the actual tasks than the TPL have. We can schedule them in a way that is far more efficient because we can tell what is actually going on.

The end result is that we are actually using less parallelism, overall, but in a more efficient manner.

In my next post, I’ll discuss the auto batch tuning support, which allows us to do some really amazing things from the point of view of system performance.

More posts in "The RavenDB indexing process" series:

  1. (24 Apr 2012) Optimization–Tuning? Why, we have auto tuning
  2. (23 Apr 2012) Optimization–Getting documents from disk
  3. (20 Apr 2012) Optimization–De-parallelizing work
  4. (19 Apr 2012) Optimization–Parallelizing work
  5. (18 Apr 2012) Optimization