The beauty of fully utilized machine

time to read 4 min | 617 words

System administrators like to see graphs with server utilizations sitting at the very low end of the scale. That means that they don’t need to worry about spikes, capacity or anything much, they are way over provisioned, and that means less waking up at night.

That works very well, until you hit a real spike, hit some sort of limit, and then have to scramble to upgrade your system while under fire, so to speak. [I have plenty of issues with the production team behavior as described in this post, but that isn’t the topic for this post.]

So one of the things that we regularly test is a system being asked to do something that is beyond its limits. For example, have 6 indexes running at the same time, indexing at different speeds, a dataset that is 57GB in size.

The idea is that we will force the system to do a lot of work that it could typically avoid by having everything in memory. Instead, we’ll be forced to page data, and we need to see how we behave under such a scenario.

Here is what this looks like from the global system behavior.


If you’ll show this to most admins, they will feel faint. That usually means Something Is About To Break Badly.

But things are slightly better when we look at the details:


So what do we have here? We have a process that (at the time of running it, has mapped about 67 GB of files, and has allocated 8.5 GB of RAM). However, only about 4.5 GB of that is actively used, and the rest of the working set is actually the memory mapped files. That lead to an interesting observation, if most of your work is local and transient (so you scan through sections of the file, like we do during indexing), the operating system will load those pages from disk, and keep them around until there is memory pressure, at which point it will look at all of those nice pages that are just sitting them, unmodified and with a source on disk.

That means that the operating can immediately discard them without having to page them out. So that means that they are very cheap. Oh, we’ll still need to load the data from disk into them, but we’ll have to do that anyway, since we can’t fit the entire dataset into memory.

So that means that our allocation strategy basically goes something like this:

  • Ignore the actually free space the operating system report.
  • Instead, take into account the private working set and compare it to the actual working set.

The private working set is what goes into the page file, it mostly consists of managed memory and whatever unmanaged allocations we have to do during the indexing. So by comparing the two, we can tell how much of the used memory is actually used by memory mapped files. We are careful to ensure that we leave about 25% of the system memory to the memory mapped files (otherwise we’ll do a lot of paging), but that still gives us leave to use quite a lot of memory to speed things up, and we can negotiate between the threads to see who is faster (and thus deserve more memory).